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Teraflux in a nutshell

● An EU research project (FET).

● Assums 1000’s processors on die

● Connected through a NoC

● No system-wide support for HW coherency

● HW components can become faulty

● Transient errors

● Stuck at faults

● SW needs to make sure it works transparency to potential faults

● Resource allocation and scheduling should be distribution

● .
Disclaimer: The project examine different potential solutions, this presentation 
presents my approach 



How to fit 1000 cores on die?

The unstructured option The Structured (hierarchical) option

Platform Peripherals 

Compute 



Basic Architecture
• Clustered architecture

– Same ISA to all processors

– HW based coherency within the cluster and no HW based coherency 

between clusters. 

• Clusters can be symmetric or asymmetric; 
1. Service-cluster(s): GP core that runs GP OS such as Linux. 

2. Auxiliary clusters: e.g., single issue, power efficient computational cores

• NoC: Supports 
1. Topological connections of resources (cores, memories, accelerators, etc.) 

within a node (cluster) and among nodes (clusters)

2. The inner cluster NoC may be different than the external NoC

• Memory hierarchy 
1. Globally addressable physical space to guarantee on-chip global accessibility, 

possibly with variable latencies (NUMA)

2. Physical memory may be partitioned into local memory vs. global memory



TERA LUXF System Overview 
Target System
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• Manages jobs on uKernel (uK) cores
• Proxies uKs I/O requests
• Remote debug uKs/self
• Runs high level (system) FT
managing uK/self faults

• Each uK runs a Task (or Tasks)
• Tasks sent by full OS (FOS)
• Tasks are DF entities, no side-effects
• Failed task simply restarted
• Runs low level FT, reporting to FOS

Single chip
Multi cores



Reliability and Fault-Tolerant – high level

• Is implemented at all different levels of the hierarchy

– At the Global Level – the Linux OS will management the resource 

partition, global scheduling, load balance, migration, etc.

– At the NoC level, an adaptive algorithm is developed to manage 

failures of links 

– At cluster level we manage and report statistics on failure to 

upper level in order to balance the execution

– At core level we assume a detection mechanism to report when 

the core, or execution of the core is faulty

• We will take advantage of the DF model that supports “all or 

nothing” execution mode.



Management and Reliability Components
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� C-TSU: Distributed Thread Scheduling Unit
Managing its affiliated L-TSUs and the communications with 
the other C-TSUs 

� L-TSU: Local Thread Scheduling Unit
Locally scheduled threads and handles communication

� L-FDU: Local Fault Detection Unit
Monitors the core for fault detection and sends Heartbeat (HB) 
Messages to the C-FDU

� C-FDU: Distributed Fault Detection Unit
Processes the HB messages and compares execution signatures
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A C-DTA Example Thread
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A Thread’s Life

�Thread creation request

�TSUs handles & replies to the request

�L-TSU spawns a Thread on its core 

�Thread execution
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A Thread Execution
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Three Phases

�Pre-Load
Load Data from Frame Mem.

�Execute
Execution with no further Mem. Access

�Post-Store
Writes results to Frame Mem. 
and/or Main Mem.
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A Thread’s Life
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�Thread create request

�D-TSU handles & replies the request 

�Thread execution

�Thread destruction
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How it works

• Compiler generate DF code out of sequential code (e.g., C )

• The execution always starts on the service cores that generate the threads 

(Tokens) and send them to the different clusters.

• All task sent to a cluster are kept in a “safe memory” queue and being 

scheduled to cores by the TSU

• After finishing the execution and assuming no fault happen, results are 

written to the task-memory and the TSU is reported it can write the 

results back to main memory. After successful update of the global 

memory, the thread is removed from the clustered queue.

• If an error occurs between during execution, the task is killed (no side 

effect) since Data Flow) and reschedule on another processor within the 

cluster.

• If error occurs while reading or writing data from or to the main memory, 

we assume a retransmit mechanism to guarantee the completion (at that 

point we assume that the operation must complete. We may release this 

assumption in the future.)



How it works

• Threads can be generated dynamically. At that point we 

assume that new threads are generated at the service cluster 

and being distributed to the clusters again 

– next step we will distribute the algorithm

• Health information and load balance
– Cores sends health information (e.g., speed, temperature, number 

tasks completers, etc.) to the cluster-FDU

– The Cluster-FDU sends the information to the service-cluster

– The service cluster take the health conditions of the cluster into 

account in order to load balance new threads.
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Reliability comes into play
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Three Phases

�Pre-Load
Load Data from Frame Mem. 

�Execute
Execution with no further Mem. 
Access

�Post-Store
Writes results to Frame Mem.

First Step: Detecting faults
� Double Execution

• Thread Duplication

• Spatial and/or Temporal Redundancy

• Utilization of the Post-Store Phase
• Writes are Buffered at D-TSU

• Signature Pairs compared at D-FDU
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�Pre-Load
Load Data from Frame Mem

�Execute
Execution with no further Mem. 
Access

�Post-Store
Writes results to Frame Mem.

Second Step: Fault Recovery
� Thread re-execution Mechanism

• Utilization of the DF Semantics
Single Assignment rule & 
Side Effect Free execution

• Shared Thread Information at the 

D-FDU

C1 CN

First Step: Detecting faults
� Dual Modular Redundancy

� Thread Duplication

� Spatial and Temporal Redundancy

• Utilization of the Post-Store Phase
• Writes are redirected and  

• compared
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• Target of software remains always the basic mesh

• Faulty elements are detected and hidden by low-level  

software virtualization (OS, FDUs, cores, FDU/TSU)

WP5 Reliability – Overall Goal
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Basic mesh chip1 chip2



Soft-Errors (Transient errors) - WIP



Classification

• Detection and handling soft-errors can be relatively simple or extremely 

difficult depending on the assumptions and HW mechanisms we are 

introducing. At that level of the research we are focusing on the following 

assumptions:
– All memory structures and buses are shielded. 

– The DF mode of operations we described before allows to terminate an 

execution w/o any side effects 

– We assume that if the “update global memory” phase began, eventually it will 

be completed

• Base of these current assumptions (that most likely will be refined later 

on), at that point we are focusing on detection errors in the control logic 

so we can indicate that an error occur.



Detection mechanism – re-execution

• Can be done via space redundancy of time 

redundancy
– Space redundancy: execute the code on 2 cores (3 are 

needed for recovery but only 2 for detection), compare the 

observable outputs and raise a flag if found not to match

– Time redundancy: execute the code twice on the same 

core and compare results. If dine smartly can cost only 4-

10% performance hit.

• Need to take care on endless loops and few other 

corner cases

• Need to address the I\O, exceptions, etc.



Checkpoint

• Checkpoints are needed if we like to optimize for performance. For 

example, allow to update global memory before we conclude the 

execution of the current one.

• Checkpoint can be done at different levels the tradeoffs are between fast 

generate, save and restore but need  to be done at a very fast paste, and 

slow generation that takes long time to generate and retrieve, but done 

infriquest.  



Summary

� We present a system level FT mechanisms

� We take advantage of the cluster architecture and the Data-Flow

� Memory model, coherency and resource management may have a 
major impact on the structure of future architectures.

� FT and reliability needs to be considered as first class citizens. 
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